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Existence results for fractional neutral
integro-differential systems with nonlocal

condition through resolvent operators

D. Mallika, D. Baleanu, S. Suganya and M. Mallika Arjunan

Abstract

The manuscript is primarily concerned with the new existence re-
sults for fractional neutral integro-differential equation (FNIDE) with
nonlocal conditions (NLCs) in Banach spaces. Based on the Banach con-
traction principle and Krasnoselskii fixed point theorem (FPT) joined
with resolvent operators, we develop the main results. Ultimately, an
representation is also offered to demonstrate the accomplished theorem.

1 Introduction

In this manuscript, we are dealing with the existence of mild solutions for
FNIDE with NLCs of the form

Dq

[
u(t) + G

(
t, u(t),

∫ t

0

e1(t, s, u(s))ds

)]
= A u(t)

+ F

(
t, u(t),

∫ t

0

e2(t, s, u(s))ds

)
+ H

(
t, u(t),

∫ t

0

e3(t, s, u(s))ds

)
,

(1.1)

u(0) + g(u) = u0, (1.2)

Key Words: Fractional calculus, integro-differential equations, nonlocal condition, re-
solvent operators, Banach and Krasnoselskii fixed point theorem.

2010 Mathematics Subject Classification: Primary 34K30, 35R11, 26A33; Secondary
45K05, 47D06.

Received: 20.02.2018
Accepted: 30.03.2018

107



Existence results for fractional... 108

where t ∈ I = [0, T ] denotes an operational interval, Dq represents the Ca-
puto fractional derivative of order 0 < q < 1, A means a closed linear un-
bounded operator in Banach space X with dense domain D(A ), u0 ∈ X and
G ,F ,H : I × X2 → X, ei : ∆ × X → X, i = 1, 2, 3; g : C(I ,X) → X are
continuous, where ∆ = {(t, s) : 0 ≤ s ≤ t ≤ T}. For curtness let us take

Eiu(t) =

∫ t

0

ei(t, s, u(s))ds, i = 1, 2, 3. Moreover the integral equation

u(t) =
1

Γ(q)

∫ t

0

A u(s)

(t− s)1−q ds, t ≥ 0, (1.3)

possess an involved resolvent operator (S(t))t≥0 on X. From this concept, we
imply the following statement.

Definition 1.1. [1, Definition 1.1.3] A one parameter family of bounded linear
operators (S(t))t≥0 on X denotes a resolvent operator for (1.3) if the subsequent
conditions are satisfied:

(a) S(·)ξ ∈ C([0,∞),X) and S(0)ξ = ξ for all ξ ∈ X,

(b) S(t)D(A ) ⊂ D(A ) and A S(t)ξ = S(t)A ξ for all ξ ∈ D(A ) ( the
domain of A ) and every t ≥ 0.

(c) for every ξ ∈ D(A ) and t ≥ 0,

S(t)ξ = ξ +
1

Γ(q)

∫ t

0

A S(p)ξ

(t− p)1−q dp.

Example 1.1. We consider X = L2[0, π] with the norm | · |L2 and define the
operator A : D(A ) ⊂ X→ X by Aw = w′′ such that

D(A ) = {w ∈ X : w′′ ∈ X, w(0) = w(π) = 0}.

Further

A w =

∞∑
n=1

n2〈w,wn〉wn, w ∈ D(A ),

where wn(s) =
√

2
π sin(ns), n = 1, 2, . . . , . denotes the orthogonal set of eigen-

vectors of A . We recall that A means the infinitesimal generator of an ana-
lytic semigroup (T (t))t≥0 in X namely

T (t)w =

∞∑
n=1

e−n
2t〈w,wn〉wn, for all w ∈ X, and every t > 0.
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From this concept, it makes sense that (T (t))t≥0 denotes a uniformly bounded
compact semigroup, so that R(λ,A ) = (λ−A )−1 represents a compact oper-
ator for all λ ∈ %(A ).

By [1, Example 2.2.1], we notice that

u(t) =
1

Γ(q)

∫ t

0

A u(s)

(t− s)1−q ds, t ≥ 0,

has an linked analytic resolvent operator (S(t))t≥0 on X. It is denoted by

S(t) =


1

2πi

∫
Γr,θ

eλt(λq −A )−1dλ, t > 0;

I, t = 0,

where Γr,θ is a contour consisting of rays {reiθ : r ≥ 0} and {re−iθ : r ≥ 0}
for some θ ∈ (π, π2 ). Definitely, we can find a constant SA in a way that
‖[S′(t) − S′(s)]x‖ ≤ SA |t − s|‖x‖[D(A )] for every t, s ≥ 0, where ‖ · ‖[D(A )]

means the graph norm.

1.1 Fractional Differential Equation

Fractional calculus is an emerging field being more than 300 years old,
while the investigation of fractional calculus principally concentrates on the
area of pure mathematics [2–5]. We recall that Mandelbrot [6] recognized
that there are numerous fractional dimension phenomena existing in nature
and technology. In perspective of this case the fractional calculus is deeply
connected to different fields of science and engineering [7-12].

1.2 Neutral Integro-differential Equation

NDEs emerge in numerous topics of applied mathematics and hence these
equations have gotten much consideration amid the most recent couple of
decades [13, 14]. We recommend to the reader [15] and the references therein.
NIDEs happen in the research of population dynamics, compartmental sys-
tems, viscoelasticity and many other areas of technology.

1.3 Nonlocal Conditions

The study of existence of solutions to evolution equations with a nonlocal
condition in Banach space was initiated by Byszewski [16]. In Byszewski and
Lakshmikantham [17] and the references therein, it’s possible to obtain other
facts about the significance of nonlocal initial conditions in uses. There have
been numerous papers related to this subject [16–19].
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1.4 Existence

We recall that the existence, controllability and other qualitative and quan-
titative properties of FDEs would be the most developing area of desire as it
can be seen from [18–22]. Mainly, there are several papers dealing with the
problem of the existence of a mild solution for abstract semilinear fractional
differential equations [[13, 18, 20, 22]]. But, as outlined in [13], some theories
of mild solution are not reasonable; for more details on this problem, we insist
the reader to refer [13]. Besides, Zhou and Jiao in [18] investigated a class of
fractional neutral evolution equations with nonlocal conditions by taking into
account an integral equation which is given in terms of probability density
and semigroup theory, they established existence and uniqueness results. This
motivate us to study the existence results of the structure (1.1)-(1.2) with
help of resolvent operators in Banach spaces. To the best of our insight the
existence results for (1.1)-(1.2) in current paper are contemporary.

Unlike the present results, this manuscript presents some other results,
namely, we include the integral term in G ,F and H and given a suitable
idea of mild solution of the model (1.1)-(1.2) under resolvent operators. After
that we discuss the existence of mild solutions for FNIDE with NLCs of the
design (1.1)-(1.2) under Banach and Krasnoselskii fixed point theorem, and
the results in [19] might be observed as the special circumstances.

This paper is organize as it is given below. In Section 2 some basic defini-
tions and results are specified. In section 3, the existence of mild solutions for
the model (1.1)-(1.2) is analyzed under Banach and Krasnoselskii fixed point
theorem. In Section 4 a proper case is presented to reveal the effectiveness of
the abstract techniques.

2 Preliminaries

Definition 2.1. The Riemann-Liouville fractional order integral operator of
order µ > 0, of function ν ∈ L1(R+) is given by

Iµ0+ν(t) =
1

Γ(µ)

∫ t

0

(t− s)µ−1ν(s)ds,

where Γ(·) is the Euler gamma function.

Definition 2.2. The expression of the Caputo fractional derivative of order
µ > 0, n− 1 < µ < n, is

CDµ
0+ν(t) =

1

Γ(n− µ)

∫ t

0

(t− s)n−µ−1νn(s)ds,
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where the function ν(t) have absolutely continuous derivatives up to order
(n− 1). If 0 < µ < 1, then

CDµ
0+ν(t) =

1

Γ(1− µ)

∫ t

0

ν′(s)

(t− s)µ
ds,

where ν′(s) = Dν(s) = d
dsν(s) and ν is an abstract function with values in X.

Additional information on fractional derivatives and their properties is
often observed in [13, 18–20].

Let C(I ;X) signifies the space of all continuous functions from I into a
Banach space X with the supnorm indicated by ‖·‖C(I ;X). The [D(A )] stands
for the domain of A endowed with the graph norm ‖x‖[D(A )] = ‖x‖+ ‖A x‖.
Furthermore, Br(x,X) symbolizes the closed ball with center at x and radius
r in X.

Below, we suppose that the resolvent operator (S(t))t≥0 of (1.3) is an-
alytic and compact; see for instance [1, Chapter 2]. Besides, ‖S′(t)x‖ ≤
ϕA (t)‖x‖[D(A )] for all t ≥ 0 and ‖[S′(t) − S′(s)]x‖ ≤ SA |t − s|‖x‖[D(A )] for
all (t, s) ≥ 0, where ϕA is a function in L1

loc([0,∞);R+) and SA represents a
constant.

Let us discuss

u(t) =
1

Γ(q)

∫ t

0

A u(s)

(t− s)1−q ds+ w(t), t ∈ I , (2.1)

where w ∈ C(I ;X). Utilising [1, Definition 1.1.1], we notice the subsequent
idea of mild solution.

Definition 2.3. A function u ∈ C(I ;X) is called a mild solution of the

integral equation (2.1) on I provided that

∫ t

0

(t− s)q−1u(s)ds ∈ D(A ) for all

t ∈ I and

u(t) =
A

Γ(q)

∫ t

0

u(s)

(t− s)1−q ds+ w(t), t ∈ I .

The following result has vital impact in our improvement, which takes after
from [13, Lemma 1.1].

Lemma 1. Suppose that the resolvent operator (S(t))t≥0 of (1.3) is analytic
and compact, and w ∈ C(I ; D(A )), then the function u : I → X defined by

u(t) =

∫ t

0

S′(t− s)w(s)ds+ w(t), t ∈ I ,

denotes a mild solution of (2.1).
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The idea of a mild solution of (1.1)-(1.2) will be introduced. This equation
is equivalent to the subsequent integral equation

u(t) = u0 − g(u) + G (0, u0, 0)− G (t, u(t), E1u(t)) +
1

Γ(q)

∫ t

0

A u(s)

(t− s)1−q ds

+
1

Γ(q)

∫ t

0

[
F (s, u(s), E2u(s)) + H (s, u(s), E3u(s))

]
(t− s)1−q ds, t ∈ I .

(2.1)

Definition 2.4. A function u ∈ C(I ,X) is said to be a mild solution of (1.1)-

(1.2) on I if

∫ t

0

(t−s)q−1u(s)ds ∈ D(A ) for all t ∈ I and fulfills the integral

equation (2.1).

To streamline our advancement, in whatever remains of this work, for a
function u ∈ C(I ;X) we use the notations Gu, Fu : I → X given by

Gu(t) = u0 − g(u) + G (0, u0, 0)− G (t, u(t), E1u(t)),

Fu(t) =
1

Γ(q)

∫ t

0

[
F (s, u(s), E2u(s)) + H (s, u(s), E3u(s))

]
(t− s)1−q ds.

Utilising the Lemma 2.1, one sees that

u(t) = Gu(t) + Fu(t) +

∫ t

0

S′(t− s)[Gu(s) + Fu(s)]ds, t ∈ I ,

is a mild solution of (1.1)-(1.2).

3 The existence results

Below, we exhibit and show the existence of solutions for the structure (1.1)-
(1.2) under Banach and Krasnoselskii’s fixed point theorem.

The following suppositions are given:

(H1) The functions G ,F ,H : I ×X2 → D(A ) are (completely) continuous,

there exist constants LG , L̃G ,LF , L̃F ,LH , L̃H > 0 in ways that for
all (t, xi, yi) ∈ I × X2, i = 1, 2, we sustain

(a) ‖G (t, x1, y1)− G (t, x2, y2)‖[D(A )] ≤ LG ‖x1 − x2‖+ L̃G ‖y1 − y2‖;

(b) ‖F (t, x1, y1)−F (t, x2, y2)‖[D(A )] ≤ LF‖x1 − x2‖+ L̃F‖y1 − y2‖;

(c) ‖H (t, x1, y1)−H (t, x2, y2)‖[D(A )] ≤ LH ‖x1 − x2‖+ L̃H ‖y1 − y2‖;
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with

CG = max
t∈I

G (t, 0, 0), CF = max
t∈I

F (t, 0, 0) and CH = max
t∈I

H (t, 0, 0).

(H2) The functions ei: ∆× X → D(A ), i = 1, 2, 3; are continuous and there
exist constants Lei > 0 such that for all (t, s, xj) ∈ ∆× X, j = 1, 2;wwww∫ t

0

[
ei(t, s, x1)− ei(t, s, x2)

]
ds

wwww
[D(A )]

≤ Lei‖x1 − x2‖,

with Ci = max
t∈I

∫ t

0

ei(t, s, 0)ds, i = 1, 2, 3.

(H3) There exists a constant Lg > 0 of the function g : C(I ,X)→ D(A ), in
a way that

‖g(x1)− g(x2)‖[D(A )] ≤ Lg‖x1 − x2‖, for all x1, x2 ∈ X.

(H4) The following inequalities holds:

(i) Let

(1 + ‖ϕA ‖L1)

(
‖u0‖+ ‖g(0)‖+ ‖G (0, u0, 0)‖+ L̃GC1 + CG

+ r(Lg + LG + L̃G Le1) + Λ
[
r(LF + LH + L̃FLe2 + L̃H Le3)

+ L̃FC2 + L̃H C3 + CF + CH

])
≤ r,

where Λ = T q

Γ(q+1) and for some r > 0.

(ii) Let

Ω = (1 + ‖ϕA ‖L1)

(
Lg + LG + L̃G Le1 + Λ

[
LF + LH + L̃FLe2

+L̃H Le3

])
< 1

be such that 0 ≤ Ω < 1.

First, we present and prove the uniqueness result.

Theorem 3.1. Assume that the conditions (H1)-(H4) hold and u0 ∈ D(A ).
Then the problem (1.1)-(1.2) has a unique mild solution on I .
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Proof. Recognize the operator Υ : C(I ,X)→ C(I ,X) by

Υu(t) = Gu(t) + Fu(t) +

∫ t

0

S′(t− s)[Gu(s) + Fu(s)]ds, t ∈ I .

In perspective of Lemma 2.1 and the argument above, it is easy to see
that the operator Υ having a fixed point. Let Z = C(I ,X) and Br(0, Z)
= {z ∈ Z : ‖z‖ ≤ r}. Initially, we demonstrate that Υ maps Br(0, Z) into
Br(0, Z). For any u ∈ Z, we have

‖(Υu)(t)‖ ≤ ‖Gu(t)‖+ ‖Fu(t)‖+

∥∥∥∥∫ t

0

S′(t− s)[Gu(s) + Fu(s)]ds

∥∥∥∥
≤ I1 + I2 + I3. (3.1)

Now, we calculate the estimations:

I1 = ‖Gu(t)‖ ≤ ‖u0‖+ ‖g(u)‖+ ‖G (0, u0, 0)‖+ ‖G (t, u(t), E1u(t))‖

≤ ‖u0‖+ ‖g(0)‖+ ‖G (0, u0, 0)‖+ L̃GC1 + CG

+ r(Lg + LG + L̃G Le1),

since

‖G (t, u(t), E1u(t))‖

≤
wwwwG

(
t, u(t),

∫ t

0

e1(t, s, u(s))ds

)
− G (t, 0, 0)

wwww+ ‖G (t, 0, 0)‖

≤ LG r + L̃G

wwww∫ t

0

e1(t, s, u(s))ds

wwww+ CG

≤ LG r + L̃G

[wwww∫ t

0

[
e1(t, s, u(s))− e1(t, s, 0)

]
ds

wwww+

wwww∫ t

0

e1(t, s, 0)ds

wwww]
+ CG

≤ LG r + L̃G Le1r + L̃GC1 + CG .

I2 = ‖Fu(t)‖ ≤ 1

Γ(q)

∫ t

0

(t− s)q−1
[
‖F (s, u(s), E2u(s))‖

+ ‖H (s, u(s), E3u(s))‖
]
ds

≤ Λ
[
r(LF + LH + L̃FLe2 + L̃H Le3) + L̃FC2 + L̃H C3

+ CF + CH

]
,
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since

1

Γ(q)

∫ t

0

‖F (s, u(s), E2u(s))‖
(t− s)1−q ds

≤ 1

Γ(q)

∫ t

0

(t− s)q−1
[
‖F (s, u(s), E2u(s))−F (s, 0, 0)‖+ ‖F (s, 0, 0)‖

]
ds

≤ 1

Γ(q)

∫ t

0

(t− s)q−1
[
LF‖u(s)‖+ L̃F‖E2u(s)‖+ CF

]
ds

≤ T q

Γ(q + 1)

[
LF r + L̃F

wwww∫ t

0

e2(t, s, u(s))ds

wwww+ CF

]
≤ Λ

[
LF r + L̃F

[wwww∫ t

0

[
e2(t, s, u(s))− e2(t, s, 0)

]
ds

wwww+

wwww∫ t

0

e2(t, s, 0)ds

wwww]
+ CF

]
≤ Λ

[
LF r + L̃FLe2r + L̃FC2 + CF

]
.

In the same way, we receive

1

Γ(q)

∫ t

0

‖H (s, u(s), E3u(s))‖
(t− s)1−q ds

≤ 1

Γ(q)

∫ t

0

(t− s)q−1
[
‖H (s, u(s), E3u(s))−H (s, 0, 0)‖+ ‖H (s, 0, 0)‖

]
ds

≤ Λ

[
LH r + L̃H Le3r + L̃H C3 + CH

]
.

Furthermore, we obtain

I3 =

∥∥∥∥∫ t

0

S′(t− s)[Gu(s) + Fu(s)]ds

∥∥∥∥
≤ ‖ϕA ‖L1

(
‖u0‖+ ‖g(0)‖+ ‖G (0, u0, 0)‖+ L̃GC1 + CG

+ r(Lg + LG + L̃G Le1) + Λ
[
r(LF + LH + L̃FLe2 + L̃H Le3)

+ L̃FC2 + L̃H C3 + CF + CH

])
.
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Therefore equation (3.1) becomes

‖(Υu)(t)‖ ≤ (1 + ‖ϕA ‖L1)

(
‖u0‖+ ‖g(0)‖+ ‖G (0, u0, 0)‖+ L̃GC1 + CG

+ r(Lg + LG + L̃G Le1) + Λ
[
r(LF + LH + L̃FLe2 + L̃H Le3)

+ L̃FC2 + L̃H C3 + CF + CH

])
≤ r.

Thus Υ maps Br(0, Z) into Br(0, Z) and so Υu ∈ Br. From the estimation
I3, we see that the function s→ S′(t− s)(Gu(s) +Fu(s)) is integrable on [0, t]
for all t ∈ I and Υu ∈ Z. Since Fu(·) and Gu(·) are continuous and hence
Υ is well defined. Finally, we show that Υ is a contraction on Br(0, Z). For
this, let us consider u, v ∈ Z and t ∈ I , we sustain

‖(Υu)(t)− (Υv)(t)‖

≤ ‖Gu(t)−Gv(t)‖+ ‖Fu(t)− Fv(t)‖+

∫ t

0

‖S′(t− s)[Gu(s)−Gv(s)]‖ ds

+

∫ t

0

‖S′(t− s)[Fu(s)− Fv(s)]‖ ds

≤ (1 + ‖ϕA ‖L1)

(
Lg + LG + L̃G Le1 + Λ

[
LF + LH + L̃FLe2

+ L̃H Le3

])
‖u− v‖

≤ Ω‖u− v‖.

From the assumption (H4) and in the perspective of the contraction map-
ping principle, we conclude that Υ includes a unique fixed point u ∈ Z which
represents a mild solution (1.1)-(1.2) on I .

Next, we present some generally existence results. As a result, we utilize
a fixed point theorem due to Krasnoselskii [18].

Theorem 3.2. Suppose that the conditions (H1)-(H4) hold and u0 ∈ D(A ).
Then the problem (1.1)-(1.2) has at least a mild solution on I provided that

(1 + ‖ϕA ‖L1)

[
Lg + LG + L̃G Le1

]
< 1. (3.2)
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Proof. Now, we define the operator Υ is same as defined in Theorem 3.1.
In order to apply Krasnoselskii theorem, we need to split the operator Υ as
Υ1 + Υ2 on Br(0, Z), where

Υ1u(t) = Gu(t) +

∫ t

0

S′(t− s)Gu(s)ds

and

Υ2u(t) = Fu(t) +

∫ t

0

S′(t− s)Fu(s)ds.

From first part of Theorem 3.1, we note that Υ maps Br(0, Z) into Br(0, Z)
and for any u, v ∈ Z, we have Υ1u+ Υ2v is also belongs to Br, since

‖Υ1u(t) + Υ2v(t)‖

≤ (1 + ‖ϕA ‖L1)

(
‖u0‖+ ‖g(0)‖+ ‖G (0, u0, 0)‖+ L̃GC1 + CG

+ r(Lg + LG + L̃G Le1) + Λ
[
r(LF + LH + L̃FLe2 + L̃H Le3)

+ L̃FC2 + L̃H C3 + CF + CH

])
≤ r.

From the estimation I3 of Theorem 3.1, we notice that∥∥∥∥∫ t

0

S′(t− s)Gu(s)ds

∥∥∥∥
≤ ‖ϕA ‖L1

[
‖u0‖+ ‖g(0)‖+ ‖G (0, u0, 0)‖+ L̃GC1 + CG

+ r(Lg + LG + L̃G Le1)

]
which suggests that the function s → S′(t− s)Gu(s) is integrable on [0, t] for
all t ∈ I and Υ1u ∈ Z.

Furthermore, for any u, v ∈ Z and from second part of Theorem 3.1, we
obtain

‖Υ1u(t)−Υ1v(t)‖ ≤ (1 + ‖ϕA ‖L1)

[
Lg + LG + L̃G Le1

]
‖u− v‖.

From (3.1), we observe that Υ1 is a contraction on Br(0, Z).
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Next, we demonstrate that the operator Υ2 is completely continuous. From

I3 of Theorem 3.1, we realize that the function s →
∫ t

0

S′(t − s)Fu(s)ds is

integrable on [0, t] for all t ∈ I . Initially, we show that Υ2 is uniformly
bounded. From I2 of Theorem 3.1, for t ∈ I , we sustain

‖Υ2u(t)‖ ≤ ‖Fu(t)‖+

∥∥∥∥∫ t

0

S′(t− s)Fu(s)ds

∥∥∥∥
≤ (1 + ‖ϕA ‖L1)Λ

[
r(LF + LH + L̃FLe2

+ L̃H Le3) + L̃FC2 + L̃H C3 + CF + CH

]
.

This shows that Υ2 is uniformly bounded.
Now, we prove that the operator Υ2 is continuous. To prove this, let {un}

be a sequence in Br(0, Z) such that un → u in Br(0, Z). Since the functions
F ,H , e2, and e3 are continuous, F (s, un(s), E2un(s)) → F (s, u(s), E2u(s))
and H (s, un(s), E3un(s)) → H (s, u(s), E3u(s)) as n → ∞. Now for each
t ∈ I , we have

‖Υ2un(t)−Υ2u(t)‖

≤ 1

Γ(q)

∫ t

0

‖F (s, un(s), E2un(s))−F (s, u(s), E2u(s))‖
(t− s)1−q ds

+
1

Γ(q)

∫ t

0

‖H (s, un(s), E3un(s))−H (s, u(s), E3u(s))‖
(t− s)1−q ds

+

∫ t

0

S′(t− s)
[

1

Γ(q)

∫ s

0

‖F (τ, un(τ), E2un(τ))−F (τ, u(τ), E2u(τ))‖
(s− τ)1−q dτ

+
1

Γ(q)

∫ s

0

‖H (τ, un(τ), E3un(τ))−H (τ, u(τ), E3u(τ))‖
(s− τ)1−q dτ

]
ds

→ 0 as n→∞.

Hence, it is easy to see that Υ2 is continuous.
Presently, we want to show that the set {Υ2u(t) : u ∈ Br(0, Z)} is relatively

compact in X for all t ∈ I . Obviously {Υ2u(0) : u ∈ Br(0, Z)} is compact.
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Fix t ∈ (0, T ] and u ∈ Br(0, Z), we recognize the operator Υ
ε

2 by

(Υ
ε

2u)(t) =
1

Γ(q)

∫ t−ε

0

F (s, u(s), E2u(s))

(t− s)1−q ds+
1

Γ(q)

∫ t−ε

0

H (s, u(s), E3u(s))

(t− s)1−q ds

+

∫ t−ε

0

S′(t− s)
[

1

Γ(q)

∫ s

0

F (τ, u(τ), E2u(τ))

(s− τ)1−q dτ

+
1

Γ(q)

∫ s

0

H (τ, u(τ), E3u(τ))

(s− τ)1−q dτ

]
ds.

From (H1)(b)(c), we note that the functions F (·),H (·) are completely con-
tinuous, the set Vε = {Υε

2u(t) : u ∈ Br(0, Z)} is precompact in X, for any
ε > 0, 0 < ε < t. In addition, for every u(·) ∈ Br(0, Z), we receive

‖Υ2u(t)−Υ
ε

2u(t)‖ ≤ 1

Γ(q)

∫ t

t−ε

‖F (s, u(s), E2u(s))‖
(t− s)1−q ds

+
1

Γ(q)

∫ t

t−ε

‖H (s, u(s), E3u(s))‖
(t− s)1−q ds

+

∫ t

t−ε
‖S′(t− s)‖

[
1

Γ(q)

∫ s

0

‖F (τ, u(τ), E2u(τ))‖
(s− τ)1−q dτ

+
1

Γ(q)

∫ s

0

‖H (τ, u(τ), E3u(τ))‖
(s− τ)1−q dτ

]
ds.

This demonstrates precompact sets Vε are arbitrarily close to the set {Υ2u(t) :
u ∈ Br(0, Z)}. Hence the set {Υ2u(t) : u ∈ Br(0, Z)} is precompact in X.

Finally, we show that Φ2(Br(0, Z)) is equicontinuous. For our convenience,
set

F̃ (s) = F (s, u(s), E2u(s)) and H̃ (s) = H (s, u(s), E3u(s)).

The functions Υ2u, u ∈ Br(0, Z) are equicontinuous at t = 0. For t < t+ h ≤
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T, h > 0 we have

‖Υ2u(t+ h)−Υ2u(t)‖

≤ 1

Γ(q)

wwww∫ t+h

0

F̃ (s)

(t+ h− s)1−q ds+

∫ t+h

0

H̃ (s)

(t+ h− s)1−q ds

−
∫ t

0

F̃ (s)

(t− s)1−q ds−
∫ t

0

H̃ (s)

(t− s)1−q ds

wwww
+

1

Γ(q)

wwww∫ t+h

0

S′(t+ h− s)
∫ s

0

F̃ (τ) + H̃ (τ)

(t+ h− τ)1−q dτds

−
∫ t

0

S′(t− s)
∫ s

0

F̃ (τ) + H̃ (τ)

(t− τ)1−q dτds

wwww
≤ 1

Γ(q)

∫ t

0

[
1

(t− s)1−q −
1

(t+ h− s)1−q

]
‖F̃ (s) + H̃ (s)‖ds

+
1

Γ(q)

∫ t+h

t

‖F̃ (s) + H̃ (s)‖
(t+ h− s)1−q ds

+
1

Γ(q)

∫ h

0

‖S′(t+ h− s)‖
∫ s

0

‖F̃ (τ) + H̃ (τ)‖
(s− τ)1−q dτds

+
1

Γ(q)

∫ t

0

‖S′(t− s)‖
wwww∫ s+h

0

F̃ (τ)

(s+ h− τ)1−q dτ +

∫ s+h

0

H̃ (τ)

(s+ h− τ)1−q dτ

−
∫ s

0

F̃ (τ)

(s− τ)1−q dτ −
∫ s

0

H̃ (τ)

(s− τ)1−q dτ

wwwwds
which tends to zero as h→ 0. From (H1)(b)(c), we observe that the func-

tions F (·) and H (·) are completely continuous, the set {Υ2u : u ∈ Br(0, Z)}
is equicontinuous. Hence, we have demonstrated that Υ2(Br(0, Z)) is rela-
tively compact for t ∈ I . By Arzela-Ascoli’s theorem Υ2 is compact. Hence
by the Krasnoselskii fixed point theorem [18] we can find a fixed point u ∈ Z in
ways that Υu = u which is the mild solution to the structure (1.1)− (1.2).
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4 Example

We discuss the following FNIDE with NLCs of the model

∂q

∂tq

[
u(t, x) + a1(t) sinu(t, x) +

∫ t

0

a2(t− s)e−u(s,x)ds

]
=

∂2

∂x2
u(t, x)

+ a3(t) sinu(t, x) +

∫ t

0

a4(t− s)e−u(s,x)ds+ a5(t) sinu(t, x)

+

∫ t

0

a6(t− s)e−u(s,x)ds, t > 0 (4.1)

u(t, 0) = u(t, π) = 0, (t, x) ∈ [0, T ]× [0, π], (4.2)

u(0, x) +

n∑
i=1

∫ ti

0

bi(τ)u(τ, x)dτ = z(x), (4.3)

where q ∈ (0, 1), z ∈ L2[0, π], ai, bi ∈ L2(I ).
In perspective of Example 1.1, it is easy to see that S(t) is differentiable and

there exists a constant M̃ > 0 in ways that ‖S′(t)x‖ ≤ M̃‖x‖, for x ∈ D(A ).
To represent the differential systems (4.1)-(4.3) in the abstract form (1.1)-
(1.2), set G ,F ,H : I × X2 → X, g : Z → X and ei : ∆× X→ X, i = 1, 2, 3;
defined by

G (t, w,E1w)(x) = w(x) + a1(t) sinw(x) + E1w(x),

E1w(x) = e1(t, s, w(x)) = a2(t− s)e−w(x);

F (t, w,E2w)(x) = w(x) + a3(t) sinw(x) + E2w(x),

E2w(x) = e2(t, s, w(x)) = a4(t− s)e−w(x);

H (t, w,E3w)(x) = w(x) + a5(t) sinw(x) + E3w(x),

E3w(x) = e3(t, s, w(x)) = a6(t− s)e−w(x)

and

g(w(x)) =

n∑
i=1

∫ ti

0

bi(τ)u(τ, x)dτ.

We notice that ‖g(u(x)) − g(v(x))‖ ≤
n∑
i=1

ti‖bi‖‖u − v‖. Since ‖ϕA ‖L1 ≤

M̃,L1 = (1+sup
t∈I
‖a1(t)‖+Le1), L1 = max

t∈I
{LG , L̃G },Le1 = sup

t∈I
‖a2(t)‖,L2 =

(1 + sup
t∈I
‖a3(t)‖ + Le2), L2 = max

t∈I
{LF , L̃F},Le2 = sup

t∈I
‖a4(t)‖,L3 =
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(1 + sup
t∈I
‖a5(t)‖+ Le3), L3 = max

t∈I
{LH , L̃H },Le3 = sup

t∈I
‖a6(t)‖ and Lg =

n∑
i=1

ti‖bi‖ and choose ti in way that

Ω = (1 + M̃)

(
Lg + L1(1 + Le1) + Λ

[
L2(1 + Le2) + L3(1 + Le3)

])
< 1.

Therefore the conditions (H1)-(H4) of Theorem 3.1 are fulfilled. Thus there
exists a function u ∈ C(I , L2[0, π]) which is a mild solution of (4.1)-(4.3) on
I .

5 Conclusion

In this manuscript, abstract results concerning the existence results of
FNIDE with NLCs of order 0 < q < 1 in Banach space are obtained. A new
set of sufficient conditions for the existence results of the system (1.1)-(1.2)
has been formulated and proved by using the fractional calculus, resolvent
operators, contraction mapping principle, Krasnoselskii fixed point theorem
and semigroup techniques. Finally an application is provided to illustrate the
obtained theoretical results. For the future research, it is interesting to inves-
tigate the existence and controllability results of FNIDE with nonlocal and
impulsive conditions of Sobolev type and time varying delays.
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